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The steady-state Burgers’ equation UU, = (l/Re) U, (0 < x Q 1) with boundary values 
u(0) = 0 and u(l) = -1 is employed as a model equation for fluid dynamics. It is shown 
how different conservative discretizations of the nonlinear term uu, govern the discretixation 
error in computational results, especially when the mesh Reynolds number Re Ax is not 
small. For a particular choice of the nonlinear discretization, the maximum error in the 
computed result can attain a value at some fairly large ReAx comparable to that expected 
at a much smaller ReAx. The formal order of accuracy of an algorithm, in terms of either 
Ax or ReAx, does not reflect the accuracy of computational results, especially when the 
mesh is coarse. 

1. INTR~DUCTI~N 

This paper employs the nonlinear, steady-state Burgers’ differential equation 
UU, = (l/Re) u,, as a model for viscous fluid flow, and investigates solutions of the 
corresponding nonlinear finite difference equations. The term ua2 is represented by the 
standard centered difference (Uj+l - 2Uj + U,&lx2, and the nonlinear term is 
replaced by the second order accurate approximation 

Additionally, in Section 5 a first order accurate approximation of uu, is used for 
comparison. 

By comparing the discrete solutions of the nonlinear difference equations with an 
exact differential solution, errors are evaluated as functions of the various parameters 
of the problem. These parameters include both those introduced by the process of 
discretization, such as the mesh size, and those presented by the physical problem 
itself, such as the Reynolds number. We obtain analytic (as opposed to computational) 
results for this simple nonlinear model problem which give functional relationships 
between the properties of the difference solution and the problem parameters. A 
forthcoming extension of this analysis will present similar results for more complicated 
gasdynamic model systems. 

This study concentrates on errors due to discretization alone. Boundary errors are 
avoided by exactly specifying boundary values. We study only difference formulations 
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generated by a class of conservative difference algorithms, so that there is no accumu- 
lation of local discretization error in the interior of any combination of computational 
cells. This allows the extension of the Stokes theorem to secure physical conservation 
relations over arbitrary volumes in the difference formulation. This analog of the 
Stokes theorem is crucial in our analytic treatment of the nonlinear difference 
solutions. These difference solutions differ from the differential solution only because 
of the (nonaccumulated) error of discretization. 

This error of discretization is often identified as the “local truncation error” with 
some “formal order of accuracy” based on the truncated residue in the Taylor series 
approximation of the difference equations. Such terms can only be meaningful when 
computing with a sufficiently small mesh size. Otherwise, difference quotients may 
fail to reasonably approximate derivatives, and the Taylor expansions involved in the 
formal definitions of accuracy become meaningless. This is especially true for oscil- 
latory difference solutions of complicated problems when we are forced to use a 
rather coarse mesh under the storage capacity and speed limitations of currently 
available computing machines. We show that the formal order of accuracy of a differ- 
ence scheme does not reflect the magnitude of discretization error for such problems, 
and we identify those parameters which do reflect this error. 

In the following, we give exact solutions of the nonlinear difference system for 
certain special values of the Reynolds number. Otherwise, we construct approximate 
solutions of the difference system by retaining the nonlinearity where crucial. Such 
approximate analytic solutions are found to agree well with those obtained by direct 
digital computation. The crucial influence of the mesh Reynolds number Re dx on 
the accuracy of the computation, based on a given algorithm, can then be analytically 
established. We identify the outstanding advantage of a conservative difference 
formulation in providing an optimal Re dx of fair size for minimizing the maximum 
error E, . The sensitive dependence of Em on slight variations in the difference 
algorithm, particularly the method of differencing nonlinear terms, is demonstrated 
We hope that constructive suggestions from the present results will be helpful for 
computational solutions of the nonlinear partial differential equations of fluid 
mechanics. 

2. NONLINEAR MODEL PROBLEM 

A. Differential Model 

The partial differential equation 

Wt + (w - c) w, = VW,, (14 

(lb) 

reduces in the steady-state (t -+ co, a/at -+ 0) to 

(w - c) w, = VW,, ) 
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FIG. 1. Model problem in physical space. 

which has the exact solution 

CLAW w(z) = c - 2 tanh ( 
aAw 4v. z), 

where w(z = 0) = c, w(z = fL) = c ? Aw/2, w(z = &co) = c T a&v/2 and (Y 
satisfies 01 tanh(~dwl/4~) = 1. Here Aw, c, and Y (a kinematic viscosity) are given 
constants. We interpret (lc) as defining a symmetric transition region of length 2L, 
centered about w = c, representing a jump in the value of w by the amount Aw under 
the effective pressure gradient -cw, (Fig. 1). The transformation 

w-c 
u=(dw/2)’ x = z/L, 7 - (AWP) t 

L 

reduces Eq. (la) for w to the time-dependent Burgers equation 

1 
u, + uu2 = K u2, . 

Here Re, = (Aw/2)L/v is a Reynolds number based upon a characteristic velocity 
Aw/2 equal to half of the jump magnitude Aw, and a characteristic length L equal to 
half of the computational field size 2L over which the velocity jump is accomplished. 

In the steady-state, Burgers’ Eq. (3a) reduces to 

1 
uu2 = -& %x 3 (3b) 

which has the exact solution 

u(x) = --ortanh (*.x) 

satisfying the boundary conditions 

u(x = 0) = 0, 
u(x = 1) = -1. 

(34 
(34 
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Equation (3b), together with boundary conditions (3d), (3e), constitutes our differ- 
ential model describing the jump condition. We have taken advantage of the symmetry 
of the differential solution (3~) to consider only “half” of the transition profile, 
-1 <U GO(Fig.2A). 

The existence of this steady-state solution (3~) indicates the presence of an un- 
changing wave front propagating with the average velocity c in the physical space z. 
The origin of the transformed coordinate x propagates with the wave. 
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FIG. 2. Typical difference solutions (with method of approximate difference solution schematically 
indicated). (A) Smooth (Re Ax 2 1). (B) Oscillatory (1 2 Re Ax < Re*Ax). (C) “Exact” (Re Ax = 
Re*Ax). (D) Oscillatory (Re Ax > Re*Ax). 

B. Dlyerence Model 

To obtain the difference equation, the x-coordinate is discretized as x = j dx 
(j = 0, 1,2 ,..., J) so that J dx = 1, and the mesh function is taken as U, = U( j dx). 
The terms of Eq. (3b) are discretized with formal second order accuracy as 

(4) 

uu, = (+), = ( 2 J y  ) uj(“jyi uj-J + ( 2 : y  ) (“f+lGT-l) , 
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where the latter difference quotient (with y replacing a introduced in [l]) represents a 
weighted average of centered difference approximations of the convective form UU, 
and the differentially equivalent divergence form (~‘72)~ . Thus the difference equation 
system representing (3b) is 

= “fe:,” [uj+l - 2Uj + Uj-1], j = I, 2 )..., J - 1, (5a) 

and the boundary conditions representing (3d), (3e) are 

u, = 0 and UJ = -1. W-9 

It can be seen from (5a) that difference solutions, like differential solutions, are always 
symmetric about U = 0. By considering only half of the profile in our model we have, 
however, tacitly assumed that the whole profile is computed with an odd number of 
mesh points. Only in this case is there in fact a mesh point exactly at the symmetry 
point of the whole profile. 

C. Comments on the Models 

The effects of discretizing the differential problem are reflected by the mesh size dx 
and the number of mesh points J + 1, where J Ax = 1. The parameter Re dx = 
(Llw/2)LLlx/v = @w/2&l / . t z v is ermed the “mesh Reynolds number.” This important 
parameter [l--3] reflects the physical characteristics of the flow @w/2, v), the compu- 
tational field size (L), and the discretization effect of the mesh size dx = l/J. Re dx, 
and not dx alone, stands as a parameter in the difference equations and measures the 
fineness of the computational mesh relative to the steepness of the gradient one wishes 
to compute. If, for example, the fluid Reynolds number Re, in model (3~) is doubled 
(say by halving v), the maximum gradient I U&x = O)l - Re,/2 is doubled. Should 
dx remain unchanged, there will be roughly half as many mesh points in the narrower 
transition region near x = 0. In order to maintain the same resolution, it is necessary 
to halve dx, whereby the original value of Re dx is restored. Thus Re lllx is the 
appropriate parameter reflecting computational resolution. A small value of Re dx 
means a fine mesh, while a large value indicates a coarse mesh. Attempts to improve 
computational accuracy through mesh refinement (i.e., decreasing Ax for a fixed Re,) 
will be interpreted through this parameter Re rlx. It is emphasized that Re Ax as 
defined here is based on the characteristic velocity jump (0 w/2) of the model transition 
region, and not (as often misconstrued) on the upstream reference velocity or local 
instantaneous convective velocity. 

The particular form of nonlinear differencing (4) was specifically constructed to 
yield a conservative difference system, so that the finite difference analog of Stokes’ 
theorem may be applied [4]. This property is crucial to our analysis in Section 4. 
The parameter y introduced in (4) is an arbitrary discretization parameter. For any 
choice of y, algorithm (4) is conservative and formally second order accurate. Different 
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choices of y result only in different Taylor series residues, all of which are formally of 
order (LIx)~ or higher. Such difference algorithms which differ formally only in higher 
order terms are shown to lead to quite different solutions when the limit dx -+ 0 is 
nof taken. 

The difference equations system (5a) will also result if algorithm (4) is employed 
to discretize Eq. (lb) and transformation (2) is then applied. Thus the difference 
solution of (Sa), (5b) truly solves the symmetric half of the transition profile of our 
model flow problem depicted in Fig. 1. 

For given values of Re dx and y, the system of coupled nonlinear algebraic equa- 
tions @a), (5b) has a large number of solutions, more than one of which may be real- 
valued. At finite Re dx, the various solutions may differ considerably, even if they all 
converge to the same limit as Re dx + 0. The central question is whether any or all 
of such difference solutions constitute “good” approximations to the differential 
solution when Re dx 2 O(1). Since computations at Re dx 2 O(1) do often provide 
“decent” approximations except in small regions where computational oscillations 
may be excessive, the present study focuses on those solutions of (5a), (5b) which are 
“decent, ” “well-behaved” solutions in the above sense, and on the effects of the 
representative computational parameters Re dx and y upon the errors in such 
computed solutions at Re fix 2 O(1). 

3. EXACT NONLINEAR DIFFERENCE SOLUTION 

We now describe a family of solutions of the nonlinear difference system, Eqs. (Sa), 
(5b), for the special mesh Reynolds numbers 

At this value Re* dx, the solution of system (5a) subject to boundary values (5b), 
i.e., U, = 0 and UJ = -1, is given as 

u, = 0, 

lJj = -1, j = 1, 2 ,..., J. 

These solutions, depicted in Fig. 2C, exhibit no oscillation and are good approxi- 
mations (especially at large Re dx) to the differential solution (3~). 

These solutions are remarkable in that they render an abrupt transition (within 
l-2 mesh spacings) without inducing oscillations into the computed flow field away 
from the transition region. They are highly desirable if the detailed structure within 
such transition regions is not of particular concern, as for shock waves in an inviscid 
field. Indeed, when the shock thickness is less than the computational mesh size dx, 
this abrupt transition is the best one could hope for. 
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It is noteworthy that the exact solution (6b) of the difference system occurs at 
different values of Re Ax for different choices of y in differencing the nonlinear term. 
Thus with y = 0 and y = cc we have Re* Ax = 4 and Re* Ax = 2 respectively, 
and we obtain Re* Ax -+ cc as y + - 1. From the point of view of constructing 
difference algorithm (4), there is no obvious reason to prefer any particular choice of y. 
However, if Re AX is known a priori, the choice y = y* = (Re dx - 4)/(2 - Re Ax) 
is “optimal” in the sense of yielding a nonoscillatory difference solution even if Re Ax 
is fairly large. 

4. APPROXIMATE SOLUTION OF NONLINEAR DIFFERENCE EQUATIONS 

This section outlines a method for constructing coarse mesh solutions of difference 
system (5a), (5b) for arbitrary combinations of the parameters y, Re Ax, and J 
(especially for fairly large Re AX and J). Linearized perturbation approaches for 
solving a nonlinear difference system, such as the methods of Strang [5] and Cheng [ 11, 
reqyire expansions in terms of a small parameter. These methods are therefore not 
useful in the present endeavor. 

The crucial step in the present analysis is to sum both sides of (5a) from j = 1 to 
j = J - 1, and rearrange to get 

u,” + Ul” + yU& - 2fe+dxy) (U, - U,) 

= u;-, -I- UJ2 + y u.l-, u.J - 2Ee;xy) (U, - u.J-,). (7) 

This summation is conveniently carried out since the difference algorithm generating 
(5a) is strictly conservative, and thus flux terms at interior cell boundaries cancel 
identically. The summation process is analogous to the application of Stokes’ theorem 
to the differential problem. By employing boundary conditions (5b) and defining 
E = u, - u,l, , Eq. (7) can be solved for U, to give 

Ul = (a) - (2 + w [l + (ie+&” + E (1 - &) + $--]l’Y 
63) 

Here, as in the following, the appropriate sign is chosen in the quadratic formula to 
obtain the difference solution which can possibly serve as a reasonable approximation 
to (3c). 

For given values of Re AX and y, U, is determined by (8) if E is known. Now 1 E 1 
can be made as smaII as desired by taking J sufficiently large. This can be justified 
by a conceptually simple but algebraically complicated method of regions which 
retains the crucial nonlinearity only near x = 0 where the gradient of the genuine 
solution is large. This method is outlined schematically in Fig. 2; the details are given 
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in [7]. An outstanding result of this analysis is that 1 E ] is very small for J 2 10 or 20 
when Re dx assumes values common in practice (O(10)). Thus when the flow feature 
in a practical computation is resolved by 10 to 20 or more mesh points, we may 
for all practical purposes take E = 0. The error in the results of computation with a 
given algorithm of discretization (given y) will then be essentially a function of Re dx 
only. 

Specifically, taking E = 0 in (8) gives 

u, = (g&) - (2 + w2 [ 1 + (;e+d;)2 ]1’2. (9) 

The value of U, can now be readily found from the nonlinear difference equation (5a) 
at j = 1 (with the boundary condition U, = 0) by solving 

u22 + [r”l - 
2(2 + r) 
Re Ax ] u2 + 

If desired, values of U at successive mesh points can also be determined. As may be 
expected (and is verified by test computations), the maximum error occurs at either 
j = 1 orj = 2 in the region of maximum gradient. Thus knowledge of U, and U, is 
sufficient to compute the error in the maximum norm. Defining the pointwise errors 
as 

f?j = [ u(jdx)- Uj I, j= 1,2 (11) 

the maximum error is then 

E&v, Re dx) = max(e, , e2). (12) 

Here u is the differential solution (3~) and U is given analytically by Eqs. (9) and (10). 
At large but finite Re Lx, the errors defined in (12) can be easily computed for any 

fixed y; the results of such computation are displayed in Fig. (3). These results have 
been confirmed by direct digital computation with various time-dependent algorithms 
(summarized in [6]) which reduce to (5a), (5b) in the steady-state. The maximum 
discretization error E, committed by the difference solution is given as a function of 
Re dx, where each curve is labeled with a value of the discretization parameter y and 
the corresponding value of Re* dx given by (6a). For a given y, the error curve shows 
a conspicuous minimum at a value of Re dx slightly less than Re* dx = 
2(2 + r)/(l + y). This is expected since at large Re dx, the differential solution (3~) is 
essentially u( j dx) = - 1 for j b 1; thus the exact difference solution (6b) is of 
minimal error. It follows that for a given (large) Re dx of computation, the choice 
of y = y* = (Re dx - 4)/(2 - Re dx) is very nearly optimal. We reiterate that 
this type of difference solution does not resolve the detailed structure of the transition 
region, but is instead an abrupt jump solution with the desirable feature of generating 
no computational oscillations away from the transition region. 
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The mesh Reynolds number Re Ax is a composite parameter which depends on the 
linear dimension L of the computational field, on the mesh size dx = l/J, and on the 
characteristic velocity jump being computed. Computation at a given Re Ax can be 
achieved with different combinations of the field size L and the number of mesh 
points J + 1. The presumed convergence of the computation at sufficiently small Ax 
or Re Ax naturally suggests that repeated computations at successively refined meshes 
will improve computational accuracy. Such mesh refinements can be accomplished 
by increasing J (decreasing Ax) until the computer limitations of storage, speed, and 
cost are encountered, and then by reducing the computational field size L. However, 
a practical lower limit on Re Ax will be reached due to the increasing difficulty in 
specifying boundary conditions as the boundaries of the field of computation come 
closer to the flow feature of interest. Thus, the Re Ax of practical computations will 
generally be appreciably larger than unity. Even without boundary errors, Fig. 3 
shows that when Re dx 2 Re* Ax, it is quite possible to decrease Re Ax (by de- 
creasing Ax and/or L) and obtain a worse solution. (This does not occur if Re Ax 5 2 
where the error bound [ E, 1 5 0.03 (Re LIx)~ given in [I] is very good, but such 
values can hardly be reached in practical computation.) Thus for the coarse mesh 
computations, it is highly desirable to have some idea of Re* dx in order to identify 
an optimal solution during the process of mesh refinement. 

FIG. 3. 
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5. FIRST ORDER SCHEMES 

The results in Fig. 3 show clearly that for coarse meshes, the error does not vary as 
(Re LIx)~ as suggested by the formal second order accuracy of the difference algorithms. 
To further illustrate this failure of the formal order of accuracy to predict the 
magnitude of computational errors, we briefly investigate the effect of discretizing the 
term au, with formal first (rather than second) order accuracy. Consideration 
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is restricted to the following two cases, both in divergence form (~“/2)~, namely, 

forward (down gradient) differencing f - 2 . ( ) 
1 Uf+l - Uj" 

dX , UW z 

backward (up gradient) differencing (4). - i * u52 -&ue_l . (1W 

All fist order schemes for discretizing the convective term UU, , such as 
uj(“j+l - Uj)/Ax, result in nonconservative difference systems and thus prevent the 
convenient summation of the difference system which is crucial to our analysis. The 
nonlinear difference systems resulting from employing (13a) or (13b) in model 
equation (3b) are respectively 

Uj”+l - Uj” = & NJ*,1 - 2u5 4- u*-1) 

u*” - ujL1 = -g& W,,l - 2u, -I- u,-1). 

Equations (14a) and (14b) hold for j = 1,2,..., J - 1, and are subject to boundary 
conditions (5b). Before presenting the results, we wish to emphasize that systems (14a) 
and (14b) are not invariant with respect to a reversal of the positive x- and U- 
directions, so that these results are not applicable for a computation of the “whole” 
profile shown in Fig. 1. 

The exact nonlinear difference solution (6b) exists for the difference systems (14a) 
and (14b) when Re* dx = co and Re* dx = 2, respectively. Proceeding as in 
Section 4 by summing (14a) and (14b) fromj = 1 to j = J - 1, invoking the boundary 
conditions U,, = 0 and U,, = - 1, taking E = 0 (i.e., UJ = UJpl), and solving for U, 
gives respectively 

U,-L- ( 
112 

Re Ax ’ + (ReIdx)2 1 

and 
u, = - Re AX/~. WW 

The errors, defined in (12) and computed from (Isa) and (15b) (the maximum error 
always occurs at j = l), are displayed in Fig. 4. The error curve for forward differ- 
encing was verified by actual computation with the Cheng-Allen scheme; for back- 
ward differencing, computation was unstable at large Re Ax (as expected from (15b)). 

The following features are apparent: 

(i) The behavior of the forward difference solution is similar to that of the 
formally second order difference solution with y = - 1. Indeed, Eq. (15a) is identical 
with (8) when y = - 1 and E = 0. Thus for J large (1 E 1 small), the behavior of the 
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first order scheme (13a) is substantially the same as that of the second order scheme 
withy = -1. 

(ii) Difference solutions with small error can be obtained at large Re Ax if 
differencing is always performed in the “correct” direction. We note that this direction 
is not always “upwind,” since the “upwind” direction can be reversed by the addition 
of the mean velocity c. The correct direction should be “down the magnitude of the 
gradient,” which is often not known a priori. 

FORWARD 

FIG. 4. Error committed by first order difference solutions. 

RcAX 

6. CONCLUSIONS 

The present analytic study of the solutions of the system of nonlinear difference 
equations describing the transition from one uniform flow velocity to another yields 
the following results that may be useful for guiding the computational solution of 
related practical problems: 

(i) With a group of formally second order accurate, strictly conservative 
difference algorithms, it is possible to obtain computational solutions with an error 
(based on the maximum norm) II, < 10 % at fairly large mesh Reynolds numbers 
(Re dx 2 10) by choosing the discretixation parameter y in the range -1 5 y 5 0. 
If we compute at Re Ax = 2(2 + r)/(l + r), E, may be less than lx, comparable 
with error values normally expected for computations at much smaller Re Ax 5 1. 

(ii) The errors in computational results with formally second order accurate 
algorithms and coarse meshes vary widely, and do not increase as LX? or (Re LIx)~. 
Furthermore, the first order accurate algorithm (13a) can provide essentially the same 
solution as does the second order algorithm with y = -1; such results can be either 
better or worse than those afforded by other formally second order schemes. Thus the 
formal order of accuracy of a difference algorithm may not reflect the magnitude of 
computational errors. The accuracy of computed results is a complicated function 
of the parameters Re dx and y and of the conservative property of the difference 
algorithm. Mesh refinement at large Re dx need not lead to a more accurate solution. 

(iii) Similar results for more general gasdynamic models will be reported 
separately. 
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